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Ergodic mixing is prerequisite to any statistical-mechanical calculation of properties derived from atomistic
dynamical simulations. Thus the time-reversible thermostats and ergostats used in simulating Gibbsian equi-
librium dynamics or nonequilibrium steady-state dynamics should impose ergodicity and mixing. Though it is
hard to visualize many-dimensional phase-space distributions, recent developments provide several practical
numerical approaches to the problem of ergodic mixing. Here we apply three of these approaches to a useful
nonequilibrium test problem, an oscillator in a temperature gradi€i063-651X%97)09711-0

PACS numbdss): 05.20.Dd, 47.27.Te, 05.45b, 05.70.Ln

I. INTRODUCTION trajectories initiated at two neighboring initial conditions
must eventually separate from each other and become uncor-
The simplest equilibrium and nonequilibrium many-body related. Mixing is important for statistical mechanics in that
problems are steady states. These include Gibbs’ equilibriurit implies the independence of measured averages to the ini-
ensembles, for which the stationary smooth phase-space diéal conditions. Without mixing, the results of numerical ex-
tributions are exactly known, as well as the prototypical noneriments would not be reproducible. Mixing typically relies
equilibrium flows which define the basic diffusive, viscous, on the “Lyapunov instability” of the dynamics—the expo-
and heat-conducting transport coefficients. The steady nortential separation of neighboring trajectories. But Lyapunov
equilibrium flows generate relatively complicated multifrac- instability does not guarantee mixing. Consider, for example,
tal phase-space structures. Because the work done by ti@e equations of motion for a particular Nelseover oscil-
special boundary conditions, or driving forces, used to stimulator [4—6] with mass, force constant, and temperature all
late nonequilibrium flows, is inevitably converted to heat,Chosen as unity:
heat reservoirs, capable of extracting the generated heat, , ) )
must be included in the simulatiofit,2]. For the application q=p; p=-q-¢p; {=p°-1.
of statistical mechanics to such dynamical simulations, it is
desirable that the overall dynamics be simultaneously “erHereq, p, and{ are, respectively, the oscillator coordinate,
godic,” “mixing,” and “time reversible.” Let us begin by ~momentum, and friction coefficient. These equations provide
defining these terms. both chaotic and regular solutions, depending on the initial
An “ergodic” dynamics must eventually approach each values. The boundaries separating such solutions are, without
and every one of the microstates which could serve as afloubt, complicated. Choosing the initial values
initial condition. Thus an isolated ergodic system would be{do,Po.¢0}={0,5,0}, and integrating numerically, the mo-
required to approach all the energy states consistent with tH&on is found to be chaotic in the three-dimensiof@lp, {}
initial energy, for example. An ergodic equilibrium system, space, with a Lyapunov exponent of order 0[8]L Although
with a volumeV, and in contact with a thermal bath, or the chaotic region covered by this solution has the same
“thermostat,” at temperaturd, would be required to ap- dimensionality as that of the full space, three, the solution
proach all the energy states possible within the fixed volumedoes not completely fill the space. Other initial conditions,
Any computationally useful ergodic dynamics would neces-separated only infinitesimally from chaotic ones, occupy in-
sarily generate these energy states with a probability densit§tead two-dimensional quasiperiodic tubular regions which
given by Gibbs’ canonical distributiorf,g,ece” /KT, Er-  surround a countable infinity of stable periodic orbits. The
godicity becomes computationally irrelevant for large sys-measures of the chaotic and regular regions are roughly
tems, because the time required to access all states divergegual. A slightly more complicated set of equations, with
strongly with system size. Ergodicity is likewise computa-two thermostatting variables rather than one,
tionally irrelevant for very high energy states, due to their . . )
negligible probability. a=p; p=-q-{p—£&p% (=p°-1; £=p*-3p?
A “mixing” dynamics eventually loses all correlations
linking the developing trajectory to its initial conditions. The provides a dynamics which is simultaneously chaotic, er-
mixing property, in the full phase space, is fundamental togodic, and mixing 11].
the simulation of stationary nonequilibrium sta{&g, for it A “time-reversible” dynamics can be made to return to
ensures that the time-averaged properties are independentits time-reversed initial state by changing the initial condi-
the initial conditions. For the dynamics to be mixing, thetions, with no change to the equations which generate the
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dynamics. In the examples given above, integrating frongostatted, particles between two elastic reflecting surfaces.
{do0,Po: Lo} OF {do,Po,L0, 70} for a timet, changing the Computational thermostats were first constructed im@n
signs ofp, and¢,, and once again integrating for a tihe  hocway[16,17. The algorithm representing the thermostat-
results in the time-reversed initial stafgy,—py,— o} or  ting action was called “velocity scaling,” because all the
{do.—Po.— Lo, 10} All the fundamental equations of phys- thermostatted velocities were periodically multiplied by a
ics are time reversible, suggesting that the thermostats arfiimerical scale factor, so as to match the instantaneous sec-
ergostats for physical simulations should have this propert;?”d moment of the velocity distribution to the desired ideal-
too [7—9]. In fact, the most successful model thermostatd@s-thermometer temperature
have this property, which greatly simplifies theoretical analy- kT=(mo 2>
ses[1,2]. |

Many types of heat reservoirs, designed to control temThoygh this periodic rescaling process is not time reversible,
perature, or energy, or stress, have been developed as genglhecomes so in the limiting case of continuous rescaling. In
alizations of the simpler Nosdoover approach. We select that |imit, the thermostatting process can be described by a
three of then(6,8,1Q for detailed discussion in Sec. Il. All feedback equation which contains a Lagrange multipfier

three time-reversible methods appear to be both ergodic anghe multiplier constrains the second moment to match the
mixing for that prototypical hard-to-mix problem, the one- temperature:

dimensional harmonic oscillator. For that reason, these more
general thermostats would appear to be useful for nonequi- . . .
librium simulations. In Sec. Il we study the ergodicity and ~ P=F—¢p; (=2 F(p/m)/2KeK=2, pp/m=0,
mixing properties for all three types of time-reversible ther-
mostats, by applying them to a nonequilibrium oscillatorwhere K is the kinetic energy. Exactly this same time-
problem[11]. Two of the three thermostats perform quite reversible motion equation results if Gauss’ principle of least
well away from equilibrium. In Sec. IV we summarize the constraint{18], or Hamilton’s principle of least actiofi9],
conclusions drawn from this work. is used in conjunction with the requirement of constant ki-
netic energy. Similar motion equations, but with a different
recipe for{, result if energy, rather than temperature, is con-
Il. MODEL HEAT RESERVOIRS trolled.
AND THERMOSTAT EORCES Nose developed a thermostat designed to reproduce
o Gibbs’ canonical ensemblg0,21], and including a “time-
Nonequilibrium steady states necessarily involve the inscgling” variables. Hoover emphasized the superiority of
teraction of a driven system with at least one heat reservoiihe simpler “NoseHoover” form of this thermostaf4].
Typically, a heat reservoir is characterized by its ideal-gasyery recently, Dettmann, and Morri§22] showed that these
thermometer temperatuie[12]. A physical picture of such NoseHoover equations of motion follow from a special
a heat reservoir is a gas of very small weakly interacting4amiltonian which avoids Né&e time scaling. For a one-
particles. In practice, such a heat reservoir is modeled byimensional oscillator, with unit mass and force constant,
adding “thermostat forces” to the dynamics of all those de-and with temperature and thermostat relaxation time of unity,
grees of freedom subject to the thermostat. The thermostghe time-reversible Ndseloover oscillator equations of mo-
forces, like the heat reservoir which they represent, are chajon describe the motion in a three-dimensiodal,p, ¢}
sen for their ability to reproduce a Gibbsian canonical distri-gpgce:
bution for the system velocitiegpp,ece™ ™ 72T indepen-
dent of the initial conditionsEnergy reservoirs, represented q=p; p=-9q-¢(p; {=p?*-1.
by “ergostat forces” can be similarly defined. It has recently
been shown that the fractal structures generated by the timdéa the time-reversed motion both and { change sign. The
reversible thermostatted equations of motion have exadnain advantage of this Nog#¢oover thermostat is simplic-
counterparts in systems free of the thermostats, provided thify. For a system which is sufficiently mixing to promote
hard-disk or hard-sphere interactions are Usg]. ergodicity, it is hard to imagine a simpler thermostat. A har-
Probabilistic thermostats have their roots in kinetic theorymonic system, on the other hand, behaves in a very compli-
and the Langevin equation, and can be represented in simgated way under the influence of a Nedeover thermostat.
lations by stochastically reflecting walls. The intrinsic irre- The extended oscillator phase spéaqep,(} is typically par-
versibility of the stochastic dynamics which results precludegitioned into both chaotic and regular regions, with the regu-
theoretical analyses based on trajectory properties. See tlar regions enclosing a countable set of stable periodic orbits.
discussion of this point in the proceedings of a recent NATOSee the illustrations in Ref5]. Because of this undesirable
conferencg14]. We do not consider such stochastic irrevers-complexity, special thermostats have been developed. Ide-
ible boundary conditions here. There are many alternativally, such a thermostat will generate ergodic dynamics for
descriptions of boundaries which are both deterministic andelatively small equilibrium systems, and will generate a
time reversible. For example, walls can be composed ofmixing dynamics both at, and away from, equilibrium.
“tethered particles”[15]. The oscillations of these tethered = Kusnezov, Bulgac, and Bauf®], and Hoover and Holian
boundary particles are governed by feedback forces whicfB] provide recent general overviews of this approach. See
control their kinetic or total energy. Ashurst’'s more sophis-especially Ju and Bulgac’s interesting application of a some-
ticated “fluid walls” [16] are closer to reality. Ashurst's what more complex “Brownian” thermostat to the dynamics
walls confine a group of collectively thermostatted, or er-of small metal clustergl0]. The most straightforward exten-
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sion of Nosés thermostat idea is to include control of addi- man had intended their chains to be useful away from equi-
tional velocity moments. The harmonic oscillator, with both librium too. But Holian pointed out that the chain thermo-
second- and fourth-moment control, was investigated fronstats fail whenever, as is usual away from equilibriggy;)

this point of view by Hoover and Holiaf8]: is nonzerd 8,23,24. In what follows, we apply the Hoover-
) . ] Holian, Bulgac-Ju-Kusnezov, and Martyna-Klein-
q=p; p=-q-{p—ép% (=p°-T; Tuckerman temperature controls to a classical one-
. 5 dimensional harmonic oscillator driven from equilibrium by
§=p"=3p5 T=1 (HH). a space-dependent thermostat. The Hoover-Holian and

: . Martyna-Klein-Tuckerman approaches, applied to the har-
The extra control variablg was designed to correct the monic oscillator, give a Gaussian distribution in the phase

pha_s_e-space_ partitioning of the Nesdeover therr_nostat. Th_e space, for the four variablesy,p,{,&}. In these cases it is
partitioning, into chaotic and regular regions, gives long-time

averages which depend on the initial conditions. For exf;(sgst?h\ée;éfg/r;hat Liouville’s theorem for the stationary flow
ample, thougHK) is correctly controlled, lack of er90(12icity

gives an incorrect fluctuation of the kinetic energyK?). 5 ID=00-+- DDt £ 7+ £Ems e (@P+pP+2+ed)2
Hoover and Holian found that controlling both the secondap/aIo dqtpprilrie=tlaple)xe

moment(K) and the fourth momentK?) was sufficient to  The Bulgac-Ju-Kusnezov approach leads instead to the very
get the complete Gibbs’' canonical distribution for a har-similar relations:

monic oscillator. Posch and Hoovgt1] showed later that : ) . .

these samdq,p,Z,&} motion equations can be easily ex- aplap=qq+pp+ 3¢+ Eé=1(a.p.¢.€)

tended to a nonequilibrium oscillator, with a temperature
varying in space,T=T(q), without losing the ergodicity
property. Bulgac, Ju, and Kusnezfl0] controlled the first  \ye giscuss the extension of all these ideas to the nonequi-
four moments of the velocity in isothermal simulations of ajjprium case in the following section.

small cluster of metal atoms. As the result of many trials, not

reprOduced here, we found that their control variables which IIl. ERGODICITY TESTS FOR A THERMOSTATTED

interact with the odd moments of the velocity distribution NONEQUILIBRIUM OSCILLATOR

{p) and{p3) were not useful for promoting ergodicity in an

oscillator. Accordingly, we consider here only the Bulgac- For simplicity, we continue to consider the illustrative
Ju-Kusnezov control of the oscillator's second and fourthproblem of a single harmonic oscillator, with unit mass and

s (AP +pP+E)2g— %4

moments(p?) and(p*): force constant. Such an oscillator, if isolated from external
forces or controls, simply traces out a constant-energy circle
a=p; p=-q-p—¢&pd (=p>-T; in its {q,p} phase space. At thermal equilibrium, with a heat
) reservoir at temperaturg, a thermostatted oscillator should
¢=p*-3p% T=1 (BXK). arrive at any combination of coordinatgand momentunp

) ) o o with a relative frequency given by Gibbs’ stationary canoni-
The control variablg has a stationary equilibrium distribu- 5| gistribution. For a temperature of unity

tion «e ¢4 providing a somewhat stiffer control than .

Noseés, together with a relatively erratic dynamics. The f(q,p)xe @ +PI2

fourth-moment control variablé is identical to that used by .
Hoover and Holiar{8]. The two-moment thermostat explored by Hoover and Holian

Rather than considering more moments, Martyna Klein(HH) and the similar, but somewhat stiffer thermostat based

and Tuckermar}6] took a qualitatively different approach, on Bulgac, Ju, and Kusnezov's wotBJK), together with

generalizing the Noskloover thermostat by introducing a EPe k“cham t’\r}IeKrrTnostat” |n|;/e|r"|]ted by l\/_I(;artyna, glem,h and
“chain” of nearest-neighbor thermostat variables, control- uckerman( ). can all three provide ergodic phase-

ling all the second moments in the chain. At equilibrium, SPace distributions for the harmonic oscillator{m,p.¢, &}

each of the variables in such a chain has a Gaussian distFPaCc€1,6.8. In the stationary equilibrium state, despite their

bution and is linked to no more than two adjacent Contro|d|fferent dynamics, the three thermostats correspond to simi-

variables. In the present work we explore the simplest of2" €xtended canonical distributions,
these thermostat chains, in which just two thermostat vari-
ables? and ¢ control the kinetic energy. The equations of

(a2 2124 g2
Frp=fukrore™ (PN

motion are quadratic: fayce (@°TPPrE02g= LY,
q=p; p=-q-(p; {(=p*-T—¢& For simplicity, we continue to set all the adjustable param-
) eters equal to unity in the nonequilibrium case too. Careful
£=7°-1; T=1 (MKT). equilibrium investigations had previously been carried out in

) ) “the HH and MKT cases, establishing that the entire four-
Martyna, Klein, and Tuckerman showed that this system igjimensional Gaussian distribution results from an arbitrary

time-reversible and ergodic at equilibrium. Because the tWaonjtial condition. The equilibrium results, which we include
time averageg{) and (&) both vanish at equilibrium, the in Table I, indicate that the BJK case is likewise ergodic.
long-time-averaged temperatu(p?) necessarily converges Here, and in what follows, we exclude from consideration
to its target value, here unity. Martyna, Klein, and Tucker-exceptional zero-measure sets of initial conditions with
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TABLE |. Dependence of the time-averaged “energie€y,=Euxr=(q?+p%+%+£%)/2 or
Eguc=(q%+ p?+ £2)/2+ {*14 and external entropy productidik: (S/k)=(— eZPtanhg)) on the deviation
from equilibriume for the Hoover-Holian, Bulgac-Ju-Kusnezov, and Martyna-Klein-Tuckerman thermostat-
ted oscillators. Time averages are given fof,100°, and 18 time steps of 0.001, where the maximum- and
mimimum-energy trajectories after 18teps were then followed, and compared, for an addition&tifte
steps.

t € Ern S Egik S Emkr Syt K

10* 00 18% 211 0.000,0.000 1.69181 0.000,0.000 1.972.03 0.000,0.000
10° 0.0 1.99, 2.00 0.000,0.000 1.76, 1.75 0.000,0.000 2.00, 2.00 0.000,0.000
10° 0.0 2.00, 2.00 0.000,0.000 1.75, 1.75 0.000,0.000 2.00, 2.00 0.000,0.000
10* 0.1 18% 217 0.001,0.002 1.501.83 0.038,0.007 1.852.04 0.001,0.002
10° 0.1 2.03, 2.02 0.001,0.001 1.49, 1.52 0.038,0.035 2.00, 2.00 0.001,0.001
1¢° 0.1 2.01, 2.01 0.001,0.001 1.49, 1.50 0.038,0.038 2.01, 2.00 0.001,0.001
10* 0.2 19Kk 215 0.002,0.007 1.A188 0.026,0.030 1.962.03 0.003,0.006
10° 0.2 2.04, 2.04 0.004,0.004 1.81, 1.80 0.025,0.025 2.00, 1.99 0.005,0.005
10¢° 0.2 2.04, 2.04 0.004,0.004 1.81, 1.81 0.025,0.025 2.00, 2.00 0.005,0.005
10* 03 2.06< 220 0.006,0.010 1.48190 0.049,0.070 1.941.99 0.008,0.011
10° 0.3 2.06, 2.06 0.008,0.008 1.84, 1.83 0.063,0.063 1.97, 1.96 0.010,0.009
10° 0.3 2.08, 2.07 0.008,0.008 1.84, 1.84 0.062,0.062 1.97, 1.96 0.010,0.010
10* 04 204 225 0.013,0.021 185207 0.112,0.123 1.881.96 0.017,0.019
10° 0.4 2.14, 2.14 0.016,0.016 2.01, 2.01 0.122,0.121 192,191 0.019,0.018
1° 0.4 2.15, 2.13 0.016,0.016 2.02, 2.02 0.121,0.120 1.92, 1.92 0.018,0.018
10* 05 215238 0.024,0036 28241 0.172,0.197 1.821.88 0.033,0.039
10° 0.5 2.26, 2.29 0.031,0.029 2.29, 2.28 0.185,0.182 1.85, 1.85 0.037,0.036
10° 0.5 2.28, 2.27 0.029,0.028 2.30, 2.29 0.184,0.185 1.85, 1.85 0.036,0.035
10* 06 229%< 261 0.040,0.063 2.0 288 0.325,0.325 1.4 191 0.049,0.080
10° 0.6 2.44, 2.44 0.050,0.048 2.85, 2.82 0.219,0.243 1.82, 1.82 0.065,0.064
10° 0.6 2.45, 2.45 0.051,0.051 2.85, 2.84 0.213,0.215 1.83, 1.82 0.066,0.065
10* 0.7 244 417 0.059,0.064 3.6837.98 0.398,0428 1.4 3.32 0.065,0.236
10° 0.7 4.14, 4.10 0.059,0.058 7.51, 7.99 0.425,0.427 3.02, 3.33 0.205,0.233
1° 0.7 417, 4.16 0.058,0.058 7.95, 7.99 0.426,0.426 3.30, 3.33 0.230,0.233
10* 0.8 1.2 283 0.002,0.115 251268 0.250,0.271 1.4 341 0.106,0.257
10° 0.8 1.42, 1.36 0.037,0.039 2.53, 2.53 0.251,0.252 3.41, 3.41 0.256,0.257
1¢° 0.8 1.30, 1.30 0.039,0.039 2.53, 2.53 0.252,0.252 3.41, 3.41 0.257,0.257
10* 09 29% 333 0.1350.230 1.K 137 0.090,0.175 1.862.07 0.228,0.249
10° 0.9 3.19, 3.18 0.257,0.255 111,111 0.090,0.091 1.87, 1.87 0.239,0.239
10° 0.9 3.19, 3.19 0.263,0.263 111,111 0.090,0.090 1.87, 1.87 0.239,0.239
10* 1.0 295 335 0.212,0.250 3.6010.41 1.446,0.730 1.882.02 0.279,0.286
10° 1.0 3.13, 3.12 0.227,0.233 3.09,10.42 1.511,0.729 1.88, 1.88 0.283,0.283
1¢° 1.0 3.15, 3.14 0.236,0.234 3.09,10.42 1.512,0.729 1.88, 1.88 0.283,0.283

g=p=0. Martyna, Klein, and Tuckermdi®] carefully veri-  asymptotically linear, for sma#, which in turn would imply
fied that these negligible sets repel, rather than attract, thinat the external thermodynamic dissipation is quadratic in
phase-space flow.

Here we apply all three thermostat approaches HH, BJK,  dinf/dt=S/k=—[dq/aq+ dp/dp+ 9Ll I¢ + &l IE]
and MKT to a one-parameter nonequilibrium problehi],
an oscillator with a coordinate-dependent temperature: =S,y k= +3¢p2= €2

T(q)=1.0+ etanh(q). Sp/k=3+3¢&pPue?;  Syerlk={+ Exe?,

Though it is plausible that linear-response theory could bd he numerical results we obtain for the HH and MKT ther-
applied to this problem, for smad, the known multifractal Mostats appear to be consistent with this expectatios tqy
nature of the phase-space distributions which result, suggesi@ about 0.5. The BJK thermostat, on the other hand, exhibits
that the theory would be difficult to work out. In the presentconsiderable nonlinearity, including limit cycles, in this same
work we carry out numerical explorations of these nonequifange ofe.

librium systems, considering a range<@<1. We would Holian pointed out to us that the ti'me averages of these
expect the corresponding heat-flux perturbation to becomearious expressions for the dissipatio®k) can all be ex-
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SMKT = 0.00 SMKT = 0.30 SMKT = 0.60

FIG. 1. Poincaresectionsp=0 for a harmonic oscillator in a temperature gradient. The thiggé, &} cases shown here, for the MKT
thermostat, suggest the gradual shift from a smooth equilibrium distribution function to a limit cycle through intermediate multifractal
distributions. The systems studied in the present work all appear to provide distributions independent of initial conditions with the exception
of the BJK thermostat a¢=1.0.

pressed in a simple form which emphasizes the importanceemperature gradient, witlk=0.1. See the representative

of the temperature perturbation proportional to taph( BJK trajectory projection shown in Fig. 2.
. Just as no experiment can exclude uncertainty in its result,
(SIky=(—ePtanh(q)); Pun=Pmxr=1;Pe=3. no numerical experiment, or test of ergodicity, can be com-

pletely definitive. Let us consider the implications of ergod-

These three alternative expressions $dollow from taking  ICity for computation. At equilibrium, where the distribution

time averages of the time derivative of an energylike qualS usually known, any allowed state should eventually occur,
dratic form: and recur. Likewise, any two trajectories, independent of

their initial conditions, will eventually, and repeatedly, ap-
(Eppmicr) =(qQ+ pp+ LL+ £€)=0; proach one another. Though these recurrence and concur-
rence properties could certainly be tested, for sufficiently
: — . : e\ low-dimensional systems such as ours, they are of no signifi-
= 3 =
(Bgad=(aq+pp+{L°+££)=0. cance whatever for statistical mechanics. This is because the

What about ergodicity and mixing for the nonequilibrium €currence and concurrence tir_nes, even for very small sys-
cases? Here, since the distributions are multifractal, rathdfMS: exceed the age of the universe. Accordingly, we do not

than Gaussian, ergodicity is arguably less significant than thifivestigate recurrence and concurrence numerically. Away
slightly different requirement, implied by mixing, that time- 'TO™M equ'“b““m there is no guarantee _that ameasure can be
averaged values be independent of the initial conditions. if€términed throughout space. The limit cycles indicate that,
far-from-equilibrium problems the multifractal distributions Sufficiently far from equilibrium, the measure can vanish al-
can even collapse to one-dimensional limit cycles, stable t§10St everywhere.

machine accuracy and independent of the initial conditions.
Space-filling ergodicity is evidently impossible under such
conditions. Figure 1 illustrates the kinds of flows which re-
sult, through a series of typical Poincasections for the
MKT thermostat. These are three-dimensional sections cut
through the four-dimensional solution space. The sections
for the HH thermostat are similar. The sections show quite
clearly the structural changes induced by increasing the tem-
perature gradient. The Poincasection of the space-filling
equilibrium distribution becomes transformed, by increasing
the temperature gradient, through a series of more-and-more
singular attractors, until a limit cycle is reached. The HH and
MKT trajectories converge to limit cycles at=0.7. For the
MKT trajectory the corresponding Poincasection reduces

to four isolated points. The existence of such robust limit-
cycle solutions, for time-reversible motion equations, ap- FIG. 2. Projectedq,p,} trajectory for a harmonic oscillator,
pears somewhat paradoxical. The BJK thermostat behavesing the BJK thermostat wite=0.11. This trajectory is a limit
differently. It already shows a limit cycle at a relatively small cycle.
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What are some practical tests of the dynamics witdoh 0.10 T r r r r
have significance for statistical mechanics, both at and away . . . : 2 t
from equilibrium? At equilibrium, ergodicity requires that 0.05 | ) .
mean values, fluctuations, and dynamical measures of insta-
bility and dissipation must all be independent of the initial 0.00 & s 8 ) g ® -
conditions. Away from equilibrium the equivalent mixing A *
property simply corresponds to the reproducibility of experi- -0.05 | .
mental averages. Thus the time averages of various mo- L -
ments, such a&y'p! {*¢'), together with the Lyapunov expo- 010 o i .
nents({\;}), and their fluctuations, and the external entropy * MKT
production(S) and its fluctuation, must all converge to val- O o oz o3 o7 o5 o6
ues independent of the initial choi¢q,p,,&}o. €

Based on preliminary investigations of all the quantities

just mentioned, we have chosen to tabulate here time aver- FIG. 3. Lyapunov spectra for thermostatted nonequilibrium os-
ages for two useful diagnostic quantities, the “energies”cmators using the HH and MKT thermostats. Both sets of four flow

(q2+ p2+ §2+ 52)/2 and[(q2+ p2+ 52)/2]_'_[54/4] and the equations are characterized here by their four Lyapunov exponents.

. . For higher values of the dimensionless temperature gradi¢hée
external entropy production rak= —3>\;. We generated spectra reveal limit cycles.

these data by first selecting 100 sets of initial conditions
{a,p,¢, &} drawn at random from the equilibrium probability erages is reflected in the Lyapunov speéicd. The magni-
density tude of the dissipative shrinking in phase spate= — S/k,
exceeds the spreading tendency expressed by the largest ex-
ponent A; when the temperature gradient magnitude
;eaches about 0.7 in these two cases. Evidently the strong
nlinearity associated with the cubic control variabigy
estroys the relatively simple response of the oscillator to a
emperature gradient.

2+ 2+ 8202, —(a?+p?+ED)2g— (A

fHH,MKT“ei(qZer feakxe
These initial data would allow us to detect the presence o
topologically isolated phase-space regions with measures
order of 0.01 or more. The 100 sets of differential equation
corresponding to the initial data were first integrated forwar
for ten million time steps, withdt=0.001, to a time of
10 000, using the classic fourth-order Runge-Kutta method.
Next, the two trajectories corresponding to the extreme time- |n principle, equilibrium tests for ergodicity can be based
averaged energy values in the set, the maximum and then recurrence and concurrence, as well as on time-averaged
minimum, were integrated forward in time for an additional values of moments, entropy production, and the Lyapunov
billion time steps. The resulting data are displayed in Table Ispectrum. In practice, only the time averages can have sig-
For small deviations from equilibrium the maximum and nificance for statistical mechanics. We have studied a variety
minimum values of energy and entropy production evidentlyof phase functions to check the ergodicity and dependence of
approach a common limit fairly quickly, with the separation dynamical averages on the initial conditions, all for the same
between the two diminishing, roughly as the inverse squargimple nonequilibrium system, but with three different ther-
root of the run length. Nea¢=0.7, where all three thermo- mostat types. We found that any of them, Hoover-Holian,
stats lead to limit cycles, it is evident that the situation isBulgac-Ju-Kusnezov, or Martyna-Klein-Tuckerman, can eas-
becoming more complicated. “Short” calculations, corre-ily provide stationary nonequilibrium states which are mix-
sponding to millions of time steps and thousands of oscillaing, so giving dynamical averages independent of the initial
tions, can have very different time averages. Quite remarkeonditions. The Lyapunov spectra reveal the erratic unpre-
ably, longer calculations, with billions of time steps, indicatedictable nature of the BJK thermostat more clearly than do
that all of the three approaches to thermostatting consideregie simple averages of phase variables.
here lead to averages free of dependence on the initial con- The Hoover-Holian and Bulgac-Ju-Kusnezov temperature
ditions. The only apparent exception which we found in thecontrols have the advantage of precise temperature control,
nonequilibrium states shown in the table is the Bulgac-Jueven far from equilibrium. The Martyna-Klein-Tuckerman
Kusnezov thermostat, at the highest value01.0. Here the  thermostat, which lacks this characteristic, does have the vir-
minimum- and maximum-energy sets fii,p,{,¢} lead to  tue of additional simplicity—the underlying equations are
periodic orbits, appearing as four- and two-point limit cyclesquadratic forms. Both the MKT and HH thermostats appear
in the p=0 Poincareplane. to exhibit a roughly linear response over a wide range of
For all three thermostat types, the rate of convergence inonequilibrium conditions. The minimum-to-maximum en-
dramatically slowed by the multifractal nature of the distri- ergy ranges shown in the table indicate considerably smaller
bution functions in the vicinity oke=0.7. Here the dissipa- fluctuations for the MKT chain approach than for the others.
tion rate and the largest Lyapunov exponknthave roughly  The more elaborate forms of the Bulgac-Ju-Kusnezov ther-
equal magnitudes. For the chaotic states which preceded tlmostats, given in the references, could be particularly desir-
cycle ate=0.7 we show the HH and MKT Lyapunov spectra able if the details of the moment fluctuations were specially
in Fig. 3. These two thermostats evidently provide relativelyimportant. The extra flexibility of the BJK thermostat is not
simple space-filling ergodic nonequilibrium trajectories for aspecially helpful in sampling the phase-space efficiently for
relatively wide range of oscillator temperature gradients. Thehe heat-flow problem studied here and leads to a particularly
change occurring in the rate of convergence of the time averratic dynamics.

IV. CONCLUSION
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