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Ergodicity, mixing, and time reversibility for atomistic nonequilibrium steady states
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Ergodic mixing is prerequisite to any statistical-mechanical calculation of properties derived from atomistic
dynamical simulations. Thus the time-reversible thermostats and ergostats used in simulating Gibbsian equi-
librium dynamics or nonequilibrium steady-state dynamics should impose ergodicity and mixing. Though it is
hard to visualize many-dimensional phase-space distributions, recent developments provide several practical
numerical approaches to the problem of ergodic mixing. Here we apply three of these approaches to a useful
nonequilibrium test problem, an oscillator in a temperature gradient.@S1063-651X~97!09711-0#

PACS number~s!: 05.20.Dd, 47.27.Te, 05.45.1b, 05.70.Ln
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I. INTRODUCTION

The simplest equilibrium and nonequilibrium many-bo
problems are steady states. These include Gibbs’ equilibr
ensembles, for which the stationary smooth phase-space
tributions are exactly known, as well as the prototypical no
equilibrium flows which define the basic diffusive, viscou
and heat-conducting transport coefficients. The steady n
equilibrium flows generate relatively complicated multifra
tal phase-space structures. Because the work done by
special boundary conditions, or driving forces, used to stim
late nonequilibrium flows, is inevitably converted to he
heat reservoirs, capable of extracting the generated h
must be included in the simulations@1,2#. For the application
of statistical mechanics to such dynamical simulations, i
desirable that the overall dynamics be simultaneously ‘
godic,’’ ‘‘mixing,’’ and ‘‘time reversible.’’ Let us begin by
defining these terms.

An ‘‘ergodic’’ dynamics must eventually approach ea
and every one of the microstates which could serve as
initial condition. Thus an isolated ergodic system would
required to approach all the energy states consistent with
initial energy, for example. An ergodic equilibrium system
with a volume V, and in contact with a thermal bath, o
‘‘thermostat,’’ at temperatureT, would be required to ap
proach all the energy states possible within the fixed volu
Any computationally useful ergodic dynamics would nec
sarily generate these energy states with a probability den
given by Gibbs’ canonical distribution,f Gibbs}e2H/kT. Er-
godicity becomes computationally irrelevant for large s
tems, because the time required to access all states dive
strongly with system size. Ergodicity is likewise comput
tionally irrelevant for very high energy states, due to th
negligible probability.

A ‘‘mixing’’ dynamics eventually loses all correlation
linking the developing trajectory to its initial conditions. Th
mixing property, in the full phase space, is fundamenta
the simulation of stationary nonequilibrium states@3#, for it
ensures that the time-averaged properties are independe
the initial conditions. For the dynamics to be mixing, t
561063-651X/97/56~5!/5517~7!/$10.00
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trajectories initiated at two neighboring initial condition
must eventually separate from each other and become un
related. Mixing is important for statistical mechanics in th
it implies the independence of measured averages to the
tial conditions. Without mixing, the results of numerical e
periments would not be reproducible. Mixing typically relie
on the ‘‘Lyapunov instability’’ of the dynamics—the expo
nential separation of neighboring trajectories. But Lyapun
instability does not guarantee mixing. Consider, for examp
the equations of motion for a particular Nose´-Hoover oscil-
lator @4–6# with mass, force constant, and temperature
chosen as unity:

q̇5p; ṗ52q2zp; ż5p221.

Hereq, p, andz are, respectively, the oscillator coordinat
momentum, and friction coefficient. These equations prov
both chaotic and regular solutions, depending on the ini
values. The boundaries separating such solutions are, wit
doubt, complicated. Choosing the initial value
$q0 ,p0 ,z0%5$0,5,0%, and integrating numerically, the mo
tion is found to be chaotic in the three-dimensional$q,p,z%
space, with a Lyapunov exponent of order 0.01@5#. Although
the chaotic region covered by this solution has the sa
dimensionality as that of the full space, three, the solut
does not completely fill the space. Other initial condition
separated only infinitesimally from chaotic ones, occupy
stead two-dimensional quasiperiodic tubular regions wh
surround a countable infinity of stable periodic orbits. T
measures of the chaotic and regular regions are roug
equal. A slightly more complicated set of equations, w
two thermostatting variables rather than one,

q̇5p; ṗ52q2zp2jp3; ż5p221; j̇5p423p2,

provides a dynamics which is simultaneously chaotic,
godic, and mixing@11#.

A ‘‘time-reversible’’ dynamics can be made to return
its time-reversed initial state by changing the initial con
tions, with no change to the equations which generate
5517 © 1997 The American Physical Society
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dynamics. In the examples given above, integrating fr
$q0 ,p0 ,z0% or $q0 ,p0 ,z0 ,h0% for a time t, changing the
signs ofpt and z t , and once again integrating for a timet,
results in the time-reversed initial state$q0 ,2p0 ,2z0% or
$q0 ,2p0 ,2z0 ,h0%. All the fundamental equations of phys
ics are time reversible, suggesting that the thermostats
ergostats for physical simulations should have this prop
too @7–9#. In fact, the most successful model thermost
have this property, which greatly simplifies theoretical ana
ses@1,2#.

Many types of heat reservoirs, designed to control te
perature, or energy, or stress, have been developed as g
alizations of the simpler Nose´-Hoover approach. We selec
three of them@6,8,10# for detailed discussion in Sec. II. Al
three time-reversible methods appear to be both ergodic
mixing for that prototypical hard-to-mix problem, the on
dimensional harmonic oscillator. For that reason, these m
general thermostats would appear to be useful for none
librium simulations. In Sec. III we study the ergodicity an
mixing properties for all three types of time-reversible th
mostats, by applying them to a nonequilibrium oscilla
problem @11#. Two of the three thermostats perform qui
well away from equilibrium. In Sec. IV we summarize th
conclusions drawn from this work.

II. MODEL HEAT RESERVOIRS
AND THERMOSTAT FORCES

Nonequilibrium steady states necessarily involve the
teraction of a driven system with at least one heat reserv
Typically, a heat reservoir is characterized by its ideal-g
thermometer temperatureT @12#. A physical picture of such
a heat reservoir is a gas of very small weakly interact
particles. In practice, such a heat reservoir is modeled
adding ‘‘thermostat forces’’ to the dynamics of all those d
grees of freedom subject to the thermostat. The thermo
forces, like the heat reservoir which they represent, are c
sen for their ability to reproduce a Gibbsian canonical dis
bution for the system velocitiesf Gibbs}e2mv2/2kT indepen-
dent of the initial conditions. Energy reservoirs, represente
by ‘‘ergostat forces’’ can be similarly defined. It has recen
been shown that the fractal structures generated by the t
reversible thermostatted equations of motion have ex
counterparts in systems free of the thermostats, provided
hard-disk or hard-sphere interactions are used@13#.

Probabilistic thermostats have their roots in kinetic the
and the Langevin equation, and can be represented in s
lations by stochastically reflecting walls. The intrinsic irr
versibility of the stochastic dynamics which results preclud
theoretical analyses based on trajectory properties. See
discussion of this point in the proceedings of a recent NA
conference@14#. We do not consider such stochastic irreve
ible boundary conditions here. There are many alterna
descriptions of boundaries which are both deterministic
time reversible. For example, walls can be composed
‘‘tethered particles’’@15#. The oscillations of these tethere
boundary particles are governed by feedback forces wh
control their kinetic or total energy. Ashurst’s more soph
ticated ‘‘fluid walls’’ @16# are closer to reality. Ashurst’s
walls confine a group of collectively thermostatted, or
nd
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gostatted, particles between two elastic reflecting surface
Computational thermostats were first constructed in anad

hoc way @16,17#. The algorithm representing the thermosta
ting action was called ‘‘velocity scaling,’’ because all th
thermostatted velocities were periodically multiplied by
numerical scale factor, so as to match the instantaneous
ond moment of the velocity distribution to the desired ide
gas-thermometer temperatureT:

kT[^mv2&.

Though this periodic rescaling process is not time reversi
it becomes so in the limiting case of continuous rescaling
that limit, the thermostatting process can be described b
feedback equation which contains a Lagrange multiplierz.
The multiplier constrains the second moment to match
temperature:

ṗ5F2zp; z[( F~p/m!/2K⇔K̇5( pṗ/m[0,

where K is the kinetic energy. Exactly this same tim
reversible motion equation results if Gauss’ principle of le
constraint@18#, or Hamilton’s principle of least action@19#,
is used in conjunction with the requirement of constant
netic energy. Similar motion equations, but with a differe
recipe forz, result if energy, rather than temperature, is co
trolled.

Nosé developed a thermostat designed to reprod
Gibbs’ canonical ensemble@20,21#, and including a ‘‘time-
scaling’’ variables. Hoover emphasized the superiority o
the simpler ‘‘Nose´-Hoover’’ form of this thermostat@4#.
Very recently, Dettmann, and Morriss@22# showed that these
Nosé-Hoover equations of motion follow from a speci
Hamiltonian which avoids Nose´’s time scaling. For a one-
dimensional oscillator, with unit mass and force consta
and with temperature and thermostat relaxation time of un
the time-reversible Nose´-Hoover oscillator equations of mo
tion describe the motion in a three-dimensional$q,p,z%
space:

q̇5p; ṗ52q2zp; ż5p221.

In the time-reversed motion bothp andz change sign. The
main advantage of this Nose´-Hoover thermostat is simplic
ity. For a system which is sufficiently mixing to promot
ergodicity, it is hard to imagine a simpler thermostat. A h
monic system, on the other hand, behaves in a very com
cated way under the influence of a Nose´-Hoover thermostat.
The extended oscillator phase space$q,p,z% is typically par-
titioned into both chaotic and regular regions, with the reg
lar regions enclosing a countable set of stable periodic orb
See the illustrations in Ref.@5#. Because of this undesirabl
complexity, special thermostats have been developed.
ally, such a thermostat will generate ergodic dynamics
relatively small equilibrium systems, and will generate
mixing dynamics both at, and away from, equilibrium.

Kusnezov, Bulgac, and Bauer@9#, and Hoover and Holian
@8# provide recent general overviews of this approach. S
especially Ju and Bulgac’s interesting application of a som
what more complex ‘‘Brownian’’ thermostat to the dynami
of small metal clusters@10#. The most straightforward exten
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sion of Nose´’s thermostat idea is to include control of add
tional velocity moments. The harmonic oscillator, with bo
second- and fourth-moment control, was investigated fr
this point of view by Hoover and Holian@8#:

q̇5p; ṗ52q2zp2jp3; ż5p22T;

j̇5p423p2; T51 ~HH!.

The extra control variablej was designed to correct th
phase-space partitioning of the Nose´-Hoover thermostat. The
partitioning, into chaotic and regular regions, gives long-ti
averages which depend on the initial conditions. For
ample, thougĥK& is correctly controlled, lack of ergodicity
gives an incorrect fluctuation of the kinetic energy^DK2&.
Hoover and Holian found that controlling both the seco
moment^K& and the fourth moment̂K2& was sufficient to
get the complete Gibbs’ canonical distribution for a h
monic oscillator. Posch and Hoover@11# showed later that
these same$q,p,z,j% motion equations can be easily e
tended to a nonequilibrium oscillator, with a temperatu
varying in space,T5T(q), without losing the ergodicity
property. Bulgac, Ju, and Kusnezov@10# controlled the first
four moments of the velocity in isothermal simulations o
small cluster of metal atoms. As the result of many trials,
reproduced here, we found that their control variables wh
interact with the odd moments of the velocity distributio
^p& and^p3& were not useful for promoting ergodicity in a
oscillator. Accordingly, we consider here only the Bulga
Ju-Kusnezov control of the oscillator’s second and fou
momentŝ p2& and ^p4&:

q̇5p; ṗ52q2z3p2jp3; ż5p22T;

j̇5p423p2; T51 ~BJK!.

The control variablez has a stationary equilibrium distribu
tion }e2z4/4, providing a somewhat stiffer control tha
Nosé’s, together with a relatively erratic dynamics. Th
fourth-moment control variablej is identical to that used by
Hoover and Holian@8#.

Rather than considering more moments, Martyna, Kle
and Tuckerman@6# took a qualitatively different approach
generalizing the Nose´-Hoover thermostat by introducing
‘‘chain’’ of nearest-neighbor thermostat variables, contr
ling all the second moments in the chain. At equilibriu
each of the variables in such a chain has a Gaussian d
bution and is linked to no more than two adjacent cont
variables. In the present work we explore the simplest
these thermostat chains, in which just two thermostat v
ablesz and j control the kinetic energy. The equations
motion are quadratic:

q̇5p; ṗ52q2zp; ż5p22T2jz;

j̇5z221; T51 ~MKT !.

Martyna, Klein, and Tuckerman showed that this system
time-reversible and ergodic at equilibrium. Because the
time averageŝż& and ^jz& both vanish at equilibrium, the
long-time-averaged temperature^p2& necessarily converge
to its target value, here unity. Martyna, Klein, and Tuck
e
-

-

e

t
h

-
h

,

-
,
tri-
l
f
i-

is
o

-

man had intended their chains to be useful away from eq
librium too. But Holian pointed out that the chain therm
stats fail whenever, as is usual away from equilibrium,^jz&
is nonzero@8,23,24#. In what follows, we apply the Hoover
Holian, Bulgac-Ju-Kusnezov, and Martyna-Klein
Tuckerman temperature controls to a classical o
dimensional harmonic oscillator driven from equilibrium b
a space-dependent thermostat. The Hoover-Holian
Martyna-Klein-Tuckerman approaches, applied to the h
monic oscillator, give a Gaussian distribution in the pha
space, for the four variables$q,p,z,j%. In these cases it is
easy to verify that Liouville’s theorem for the stationary flo
takes the form

] ṗ/]p[qq̇1pṗ1zż1jj̇⇒ f ~q,p,z,j!}e2~q21p21z21j2!/2.

The Bulgac-Ju-Kusnezov approach leads instead to the
similar relations:

] ṗ/]p[qq̇1pṗ1z3ż1jj̇⇒ f ~q,p,z,j!

}e2~q21p21j2!/2e2z4/4.

We discuss the extension of all these ideas to the none
librium case in the following section.

III. ERGODICITY TESTS FOR A THERMOSTATTED
NONEQUILIBRIUM OSCILLATOR

For simplicity, we continue to consider the illustrativ
problem of a single harmonic oscillator, with unit mass a
force constant. Such an oscillator, if isolated from exter
forces or controls, simply traces out a constant-energy ci
in its $q,p% phase space. At thermal equilibrium, with a he
reservoir at temperatureT, a thermostatted oscillator shoul
arrive at any combination of coordinateq and momentump
with a relative frequency given by Gibbs’ stationary cano
cal distribution. For a temperature of unity

f ~q,p!}e2~q21p2!/2.

The two-moment thermostat explored by Hoover and Hol
~HH! and the similar, but somewhat stiffer thermostat bas
on Bulgac, Ju, and Kusnezov’s work~BJK!, together with
the ‘‘chain thermostat’’ invented by Martyna, Klein, an
Tuckerman ~MKT !, can all three provide ergodic phas
space distributions for the harmonic oscillator in$q,p,z,j%
space@1,6,8#. In the stationary equilibrium state, despite the
different dynamics, the three thermostats correspond to s
lar extended canonical distributions,

f HH[ f MKT}e2~q21p21z21j2!/2;

f BJK}e2~q21p21j2!/2e2z4/4.

For simplicity, we continue to set all the adjustable para
eters equal to unity in the nonequilibrium case too. Care
equilibrium investigations had previously been carried ou
the HH and MKT cases, establishing that the entire fo
dimensional Gaussian distribution results from an arbitr
initial condition. The equilibrium results, which we includ
in Table I, indicate that the BJK case is likewise ergod
Here, and in what follows, we exclude from considerati
exceptional zero-measure sets of initial conditions w
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TABLE I. Dependence of the time-averaged ‘‘energies’’EHH5EMKT5(q21p21z21j2)/2 or

EBJK5(q21p21j2)/21z4/4 and external entropy productionṠ/k: ^Ṡ/k&[^2ezptanh(q)& on the deviation
from equilibriume for the Hoover-Holian, Bulgac-Ju-Kusnezov, and Martyna-Klein-Tuckerman thermo
ted oscillators. Time averages are given for 107, 108, and 109 time steps of 0.001, where the maximum- a
mimimum-energy trajectories after 107 steps were then followed, and compared, for an additional 109 time
steps.

t e EHH ṠHH /k EBJK ṠBJK /k EMKT ṠMKT /k

104 0.0 1.89, 2.11 0.000,0.000 1.69, 1.81 0.000,0.000 1.97, 2.03 0.000,0.000
105 0.0 1.99, 2.00 0.000,0.000 1.76, 1.75 0.000,0.000 2.00, 2.00 0.000,0.
106 0.0 2.00, 2.00 0.000,0.000 1.75, 1.75 0.000,0.000 2.00, 2.00 0.000,0.
104 0.1 1.89, 2.17 0.001,0.002 1.50, 1.83 0.038,0.007 1.95, 2.04 0.001,0.002
105 0.1 2.03, 2.02 0.001,0.001 1.49, 1.52 0.038,0.035 2.00, 2.00 0.001,0.
106 0.1 2.01, 2.01 0.001,0.001 1.49, 1.50 0.038,0.038 2.01, 2.00 0.001,0.
104 0.2 1.91, 2.15 0.002,0.007 1.73, 1.88 0.026,0.030 1.96, 2.03 0.003,0.006
105 0.2 2.04, 2.04 0.004,0.004 1.81, 1.80 0.025,0.025 2.00, 1.99 0.005,0.
106 0.2 2.04, 2.04 0.004,0.004 1.81, 1.81 0.025,0.025 2.00, 2.00 0.005,0.
104 0.3 2.00, 2.20 0.006,0.010 1.78, 1.90 0.049,0.070 1.94, 1.99 0.008,0.011
105 0.3 2.06, 2.06 0.008,0.008 1.84, 1.83 0.063,0.063 1.97, 1.96 0.010,0.
106 0.3 2.08, 2.07 0.008,0.008 1.84, 1.84 0.062,0.062 1.97, 1.96 0.010,0.
104 0.4 2.04, 2.25 0.013,0.021 1.95, 2.07 0.112,0.123 1.88, 1.96 0.017,0.019
105 0.4 2.14, 2.14 0.016,0.016 2.01, 2.01 0.122,0.121 1.92, 1.91 0.019,0.
106 0.4 2.15, 2.13 0.016,0.016 2.02, 2.02 0.121,0.120 1.92, 1.92 0.018,0.
104 0.5 2.15, 2.38 0.024,0.036 2.18, 2.41 0.172,0.197 1.82, 1.88 0.033,0.039
105 0.5 2.26, 2.29 0.031,0.029 2.29, 2.28 0.185,0.182 1.85, 1.85 0.037,0.
106 0.5 2.28, 2.27 0.029,0.028 2.30, 2.29 0.184,0.185 1.85, 1.85 0.036,0.
104 0.6 2.29, 2.61 0.040,0.063 2.70, 2.88 0.325,0.325 1.75, 1.91 0.049,0.080
105 0.6 2.44, 2.44 0.050,0.048 2.85, 2.82 0.219,0.243 1.82, 1.82 0.065,0.
106 0.6 2.45, 2.45 0.051,0.051 2.85, 2.84 0.213,0.215 1.83, 1.82 0.066,0.
104 0.7 2.44, 4.17 0.059,0.064 3.03, 7.98 0.398,0.428 1.74, 3.32 0.065,0.236
105 0.7 4.14, 4.10 0.059,0.058 7.51, 7.99 0.425,0.427 3.02, 3.33 0.205,0.
106 0.7 4.17, 4.16 0.058,0.058 7.95, 7.99 0.426,0.426 3.30, 3.33 0.230,0.
104 0.8 1.22, 2.83 0.002,0.115 2.51, 2.68 0.250,0.271 1.74, 3.41 0.106,0.257
105 0.8 1.42, 1.36 0.037,0.039 2.53, 2.53 0.251,0.252 3.41, 3.41 0.256,0.
106 0.8 1.30, 1.30 0.039,0.039 2.53, 2.53 0.252,0.252 3.41, 3.41 0.257,0.
104 0.9 2.99, 3.33 0.135,0.230 1.11, 1.37 0.090,0.175 1.86, 2.07 0.228,0.249
105 0.9 3.19, 3.18 0.257,0.255 1.11, 1.11 0.090,0.091 1.87, 1.87 0.239,0.
106 0.9 3.19, 3.19 0.263,0.263 1.11, 1.11 0.090,0.090 1.87, 1.87 0.239,0.
104 1.0 2.95, 3.35 0.212,0.250 3.00,10.41 1.446,0.730 1.88, 2.02 0.279,0.286
105 1.0 3.13, 3.12 0.227,0.233 3.09,10.42 1.511,0.729 1.88, 1.88 0.283,0
106 1.0 3.15, 3.14 0.236,0.234 3.09,10.42 1.512,0.729 1.88, 1.88 0.283,0
t
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q5p50. Martyna, Klein, and Tuckerman@6# carefully veri-
fied that these negligible sets repel, rather than attract,
phase-space flow.

Here we apply all three thermostat approaches HH, B
and MKT to a one-parameter nonequilibrium problem@11#,
an oscillator with a coordinate-dependent temperature:

T~q!51.01etanh~q!.

Though it is plausible that linear-response theory could
applied to this problem, for smalle, the known multifractal
nature of the phase-space distributions which result, sugg
that the theory would be difficult to work out. In the prese
work we carry out numerical explorations of these noneq
librium systems, considering a range 0<e<1. We would
expect the corresponding heat-flux perturbation to beco
he

,

e

sts
t
i-

e

asymptotically linear, for smalle, which in turn would imply
that the external thermodynamic dissipation is quadratic ine:

dlnf /dt[Ṡ/k[2@]q̇/]q1] ṗ/]p1]ż/]z1]j̇/]j#

⇒ṠHH /k5z13jp2}e2;

ṠBJK /k5z313jp2}e2; ṠMKT /k5z1j}e2.

The numerical results we obtain for the HH and MKT the
mostats appear to be consistent with this expectation fore up
to about 0.5. The BJK thermostat, on the other hand, exhi
considerable nonlinearity, including limit cycles, in this sam
range ofe.

Holian pointed out to us that the time averages of th
various expressions for the dissipation^Ṡ/k& can all be ex-
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FIG. 1. Poincare´ sectionsp50 for a harmonic oscillator in a temperature gradient. The three$q,z,j% cases shown here, for the MKT
thermostat, suggest the gradual shift from a smooth equilibrium distribution function to a limit cycle through intermediate multifra
distributions. The systems studied in the present work all appear to provide distributions independent of initial conditions with the exc
of the BJK thermostat ate51.0.
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pressed in a simple form which emphasizes the importa
of the temperature perturbation proportional to tanh(q):

^Ṡ/k&[^2ezptanh~q!&; pHH5pMKT51;pBJK53.

These three alternative expressions forṠ follow from taking
time averages of the time derivative of an energylike q
dratic form:

^ĖHH,MKT&[^q̇q1 ṗp1 żz1 j̇j&[0;

^ĖBJK&[^q̇q1 ṗp1 żz31 j̇j&[0.

What about ergodicity and mixing for the nonequilibriu
cases? Here, since the distributions are multifractal, ra
than Gaussian, ergodicity is arguably less significant than
slightly different requirement, implied by mixing, that time
averaged values be independent of the initial conditions
far-from-equilibrium problems the multifractal distribution
can even collapse to one-dimensional limit cycles, stable
machine accuracy and independent of the initial conditio
Space-filling ergodicity is evidently impossible under su
conditions. Figure 1 illustrates the kinds of flows which r
sult, through a series of typical Poincare´ sections for the
MKT thermostat. These are three-dimensional sections
through the four-dimensional solution space. The secti
for the HH thermostat are similar. The sections show qu
clearly the structural changes induced by increasing the t
perature gradient. The Poincare´ section of the space-filling
equilibrium distribution becomes transformed, by increas
the temperature gradient, through a series of more-and-m
singular attractors, until a limit cycle is reached. The HH a
MKT trajectories converge to limit cycles ate50.7. For the
MKT trajectory the corresponding Poincare´ section reduces
to four isolated points. The existence of such robust lim
cycle solutions, for time-reversible motion equations, a
pears somewhat paradoxical. The BJK thermostat beh
differently. It already shows a limit cycle at a relatively sma
ce
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temperature gradient, withe50.1. See the representativ
BJK trajectory projection shown in Fig. 2.

Just as no experiment can exclude uncertainty in its res
no numerical experiment, or test of ergodicity, can be co
pletely definitive. Let us consider the implications of ergo
icity for computation. At equilibrium, where the distributio
is usually known, any allowed state should eventually occ
and recur. Likewise, any two trajectories, independent
their initial conditions, will eventually, and repeatedly, a
proach one another. Though these recurrence and con
rence properties could certainly be tested, for sufficien
low-dimensional systems such as ours, they are of no sig
cance whatever for statistical mechanics. This is because
recurrence and concurrence times, even for very small
tems, exceed the age of the universe. Accordingly, we do
investigate recurrence and concurrence numerically. Aw
from equilibrium there is no guarantee that a measure ca
determined throughout space. The limit cycles indicate th
sufficiently far from equilibrium, the measure can vanish
most everywhere.

FIG. 2. Projected$q,p,z% trajectory for a harmonic oscillator
using the BJK thermostat withe50.11. This trajectory is a limit
cycle.
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What are some practical tests of the dynamics whichdo
have significance for statistical mechanics, both at and a
from equilibrium? At equilibrium, ergodicity requires tha
mean values, fluctuations, and dynamical measures of in
bility and dissipation must all be independent of the init
conditions. Away from equilibrium the equivalent mixin
property simply corresponds to the reproducibility of expe
mental averages. Thus the time averages of various
ments, such aŝqipjzkj l&, together with the Lyapunov expo
nents^$l i%&, and their fluctuations, and the external entro
production^Ṡ& and its fluctuation, must all converge to va
ues independent of the initial choice$q,p,z,j%0.

Based on preliminary investigations of all the quantit
just mentioned, we have chosen to tabulate here time a
ages for two useful diagnostic quantities, the ‘‘energie
(q21p21z21j2)/2 and @(q21p21j2)/2#1@z4/4# and the
external entropy production rateṠ/k52(l i . We generated
these data by first selecting 100 sets of initial conditio
$q,p,z,j% drawn at random from the equilibrium probabilit
density

f HH,MKT}e2~q21p21z21j2!/2; f BJK}e2~q21p21j2!/2e2z4/4.

These initial data would allow us to detect the presence
topologically isolated phase-space regions with measure
order of 0.01 or more. The 100 sets of differential equatio
corresponding to the initial data were first integrated forw
for ten million time steps, withdt50.001, to a time of
10 000, using the classic fourth-order Runge-Kutta meth
Next, the two trajectories corresponding to the extreme tim
averaged energy values in the set, the maximum and
minimum, were integrated forward in time for an addition
billion time steps. The resulting data are displayed in Tabl

For small deviations from equilibrium the maximum an
minimum values of energy and entropy production eviden
approach a common limit fairly quickly, with the separatio
between the two diminishing, roughly as the inverse squ
root of the run length. Neare50.7, where all three thermo
stats lead to limit cycles, it is evident that the situation
becoming more complicated. ‘‘Short’’ calculations, corr
sponding to millions of time steps and thousands of osci
tions, can have very different time averages. Quite rema
ably, longer calculations, with billions of time steps, indica
that all of the three approaches to thermostatting consid
here lead to averages free of dependence on the initial
ditions. The only apparent exception which we found in t
nonequilibrium states shown in the table is the Bulgac-
Kusnezov thermostat, at the highest value ofe, 1.0. Here the
minimum- and maximum-energy sets of$q,p,z,j% lead to
periodic orbits, appearing as four- and two-point limit cycl
in the p50 Poincare´ plane.

For all three thermostat types, the rate of convergenc
dramatically slowed by the multifractal nature of the dist
bution functions in the vicinity ofe50.7. Here the dissipa
tion rate and the largest Lyapunov exponentl1 have roughly
equal magnitudes. For the chaotic states which preceded
cycle ate50.7 we show the HH and MKT Lyapunov spect
in Fig. 3. These two thermostats evidently provide relativ
simple space-filling ergodic nonequilibrium trajectories fo
relatively wide range of oscillator temperature gradients. T
change occurring in the rate of convergence of the time
ay
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erages is reflected in the Lyapunov spectra$l%. The magni-
tude of the dissipative shrinking in phase space,(l52Ṡ/k,
exceeds the spreading tendency expressed by the larges
ponent l1 when the temperature gradient magnitudee
reaches about 0.7 in these two cases. Evidently the st
nonlinearity associated with the cubic control variablezBJK
destroys the relatively simple response of the oscillator t
temperature gradient.

IV. CONCLUSION

In principle, equilibrium tests for ergodicity can be bas
on recurrence and concurrence, as well as on time-avera
values of moments, entropy production, and the Lyapun
spectrum. In practice, only the time averages can have
nificance for statistical mechanics. We have studied a var
of phase functions to check the ergodicity and dependenc
dynamical averages on the initial conditions, all for the sa
simple nonequilibrium system, but with three different the
mostat types. We found that any of them, Hoover-Holia
Bulgac-Ju-Kusnezov, or Martyna-Klein-Tuckerman, can e
ily provide stationary nonequilibrium states which are m
ing, so giving dynamical averages independent of the ini
conditions. The Lyapunov spectra reveal the erratic unp
dictable nature of the BJK thermostat more clearly than
the simple averages of phase variables.

The Hoover-Holian and Bulgac-Ju-Kusnezov temperat
controls have the advantage of precise temperature con
even far from equilibrium. The Martyna-Klein-Tuckerma
thermostat, which lacks this characteristic, does have the
tue of additional simplicity—the underlying equations a
quadratic forms. Both the MKT and HH thermostats app
to exhibit a roughly linear response over a wide range
nonequilibrium conditions. The minimum-to-maximum e
ergy ranges shown in the table indicate considerably sma
fluctuations for the MKT chain approach than for the othe
The more elaborate forms of the Bulgac-Ju-Kusnezov th
mostats, given in the references, could be particularly de
able if the details of the moment fluctuations were specia
important. The extra flexibility of the BJK thermostat is n
specially helpful in sampling the phase-space efficiently
the heat-flow problem studied here and leads to a particul
erratic dynamics.

FIG. 3. Lyapunov spectra for thermostatted nonequilibrium
cillators using the HH and MKT thermostats. Both sets of four flo
equations are characterized here by their four Lyapunov expone
For higher values of the dimensionless temperature gradiente the
spectra reveal limit cycles.
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